

Flexible electronics for implantable medical devices: the Optogenerapy case and beyond.

A project coordinated by

Esther Hurtós EuroNanoForum 2019 Bucarest, 12th June 2019

About the Horizon 2020 funded project:

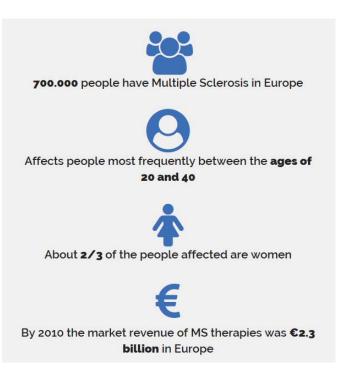
Optogenetic Protein Therapy for Multiple Sclerosis

Acronym: OPTOGENERAPY

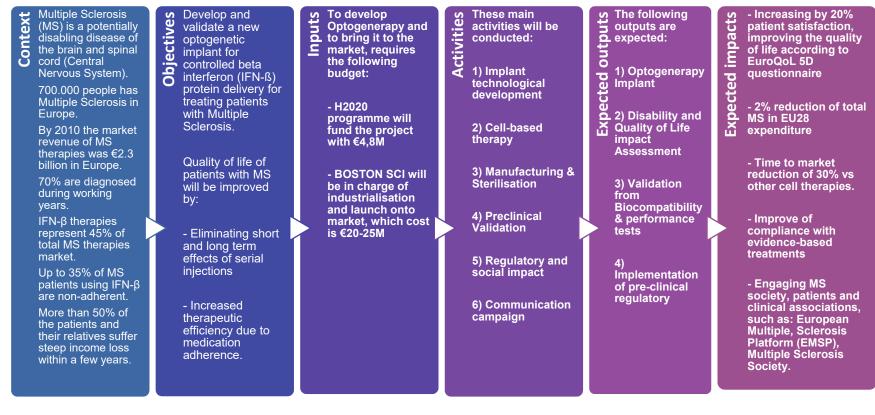
Call – Topic: NMBP-09-2016 Biomaterials for diagnosis and treatment of demyelination disorders of the Central Nervous System.

Duration: 36 Months (1st January 2017 to 31st January 2020)

Budget: 6.233.258 € (EU contribution: 4.777.258 €)


- **11 partners** from 7 European countries:
 - **4 SMEs:** TWO, NEOS and Ultrasion (ES); geneXplain (DE);
 - LE: BOSTON Scientific (IE)
 - 5 RTOs: EURECAT (ES); ETHZ (CH); INSERM (FR); TUL (PL) and ERASMUS (NL)
 - 1 Standardization body: UNE (ES)

The need: reliable Multiple Sclerosis therapies



3 <>

Optogenerapy project summary

otogenera

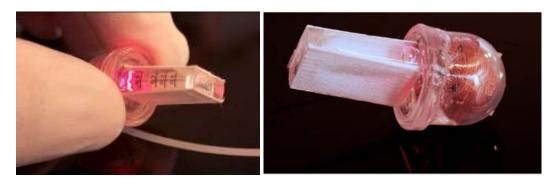
General Objectives

To develop and demonstrate a <u>new optogenetics implant for controlled beta interferon (IFN-ß)</u> protein delivery for treating patients suffering from multiple sclerosis.

It is a **new bio-electronic cell based implant device to be implanted subcutaneously** providing controlled drug production and release during at least 6 months, up to pre-clinical stage.

It is a **wireless powered optogenetics device** where light controls the cellular response of genetically engineered cells that produce the drug in safe conditions, combining:

- Polymeric biomaterials with strong optical, biocompatibility and barrier requirements.
- **Optoelectronics** miniaturization, autonomy and optical performance.
- **Cellular engineering** design for stability and performance of the synthetic optogenetic gene pathway over long-term implantation.
- **Micro moulding** enabling optoelectronics embedding for safety and minimal invasiveness: in-mold electronics in micro implantable devices.



Concept

Optogenetic Implant, consisting of:

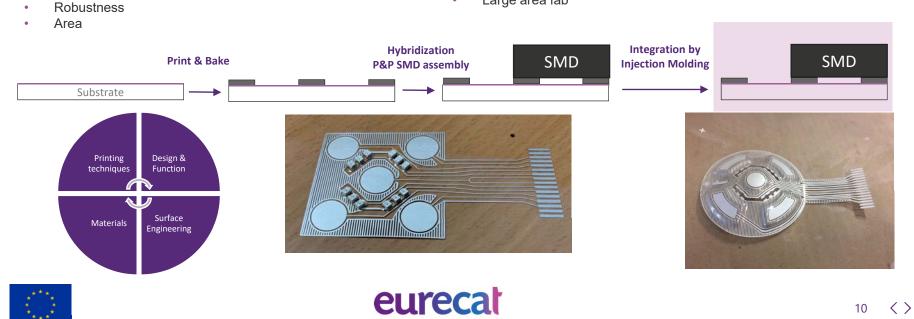
- Drug delivery **cell chamber**: composed of a frame of biocompatible optical polymer with the upper and lower surfaces closed by flat membranes, and a lateral filling port to load cells in the cell chamber.
- **Optoelectronics module**: a micro-power energy harvesting antenna and rectifying circuit controling a NIR-LED, packaged in long term hermetic and stable material and then embedded in moulded polymer.

First prototypes by ETHZ, with conventional electronics

- **Benefits**
- A reliable **ON/OFF switch** to start and interrupt the drug delivery:
 - With external control possible.
 - Steady drug flow: eliminating serum peak levels.
- Cell-produced IFN- β not causing immune reaction in the long-term.
 - Health gain and increased **patient satisfaction of 20%**.
- Minimal invasive device: ambulatory surgery.
 - Help to improve adherence and persistence.
 - Reduce side and long term effects.
- Save the costs of non-adherence to the healthcare system: direct and indirect: **2% reduction** of total MS EU expenditure.

Printed flexible electronics as a key enabler in Optogenerapy

Printed Electronics is the technology able to fabricate electronic circuits in all range of substrates and soft materials due it's low temperature inks & processes .


Challenges

.

Reliability

Advantages

- Flexibility/thickness
- Compatible technology
- Low weight
- Cost reduction
- Robustness
- Large area fab

Hybrid Printed Electronics concept

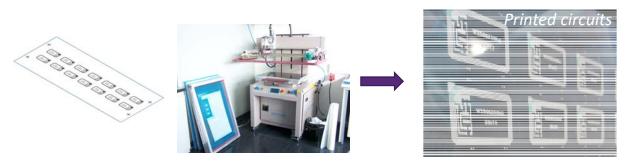
Challenges

- Provide a good mechanical adhesion of the components on the film.
- Achieve a good electrical contact (minimizing the electrical contact resistance).
- Deposit conductive paste drops with high-precision to avoid short circuits caused by a bad deposition.

Copper tracks in rigid conventional PCB: High temperature processing

Printed silver tracks on flexible polymer foil: Low temperature materials & techniques

Invasiveness KPIs	PCB electronics	Hybrid printed electronics
Implant weight, g	3	2,1
Implant thickness, mm	6,9	4





Optoelectronic Device Manufacturing Workflow

1. Screenprinting & Curing

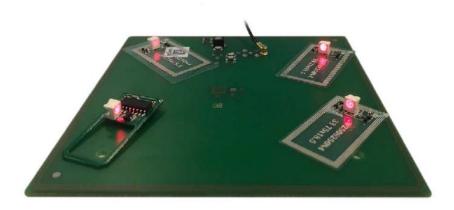
2. Hybridization by P&P SMD assembly & curing

P&P Adhesive and SMD chip

Hybrid printed circuit

3. Silicone Molding

Molded Hybrid printed circuit



Flexible electronics for a cell-based bio-electronic implant

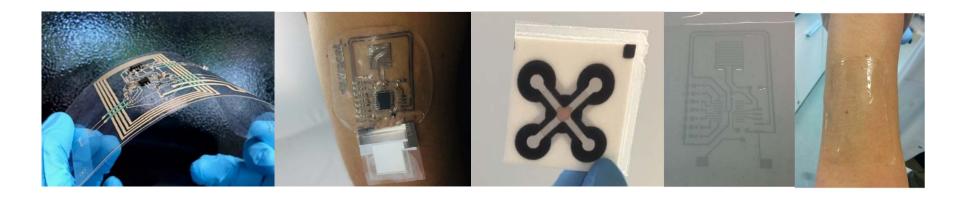
External Controlling Module

- ON / OFF external LED switch
- Emitter electromagnetic antenna: to power the electronics encapsulated in the implant by electromagnetic energy.

Implant flexible electronics

- **Optoelectronics unit**: electronic circuit of the implant in flexible electronics and hybridized LED, which controls the generation of the IFN-β drug by the cells within the chamber.
- **Compact low-resistance screen-printed flexible NFC antennas** of high quality factor with the footprint and interconnections on which the components are hybridized. NFC enables the exchange of data between two devices and smaller Q factor antennas than with PCB.

The flexibility and miniturization of the antenna play an important role in implants, but can also be applied to packaging and payment solutions.


Flexible electronics for medical devices, beyond Optogenerapy

Flexible electronics for medical devices, beyond Optogenerapy

Epidermal electronics, Point of Care devices & Robotic Skin

Autonomous & Self-Powered Smart Patches with Printed Sensors & Biosensors

15 <>

Flexible electronics and Injection Moulding in medical devices

In Optogenerapy: In-mould integration of printed electronics and silicone (or other biocompatible polymer)

Benefits

- Simplification of the device arquitecture: thin & lightweight parts: minimally invasive devices
- Multifunctionality
- Integration of LEDs and optical functionalities in the plastics to perform as lenses.
- Encapsulated and protected printed electronics with overmoulded plastic.
- Compatible with curved 3D shapes.

Applications

- Smart medical devices
- Bio-electronics
- Opto-genetics
- Microfluidics
- Biosensors

Thank you!

Esther Hurtos esther.hurtos@eurecat.org

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 720694